Multiparameter Hierarchical Clustering Methods

نویسندگان

  • Gunnar Carlsson
  • Facundo Mémoli
چکیده

We propose an extension of hierarchical clustering methods, called multiparameter hierarchical clustering methods which are designed to exhibit sensitivity to density while retaining desirable theoretical properties. The input of the method we propose is a triple pX, d, fq, where pX, dq is a finite metric space and f : X Ñ R is a function defined on the data X, which could be a density estimate or could represent some other type of information. The output of our method is more general than dendrograms in that we track two parameters: the usual scale parameter and a parameter related to the function f . Our construction is motivated by the methods of persistent topology [6], the Reeb graph and Cluster Trees [16]. We present both a characterization, and a stability theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of the Best Hierarchical Clustering Method for Regional Analysis of Base Flow Index in Kerman Province Catchments

The lack of complete coverage of hydrological data forces hydrologists to use the homogenization methods in regional analysis. In this research, in order to choose the best Hierarchical clustering method for regional analysis, base flow and related index were extracted from daily stream flow data using two parameter recursive digital filters in 43 hydrometric stations of the Kerman province. Ph...

متن کامل

به کارگیری روش‌های خوشه‌بندی در ریزآرایه DNA

Background: Microarray DNA technology has paved the way for investigators to expressed thousands of genes in a short time. Analysis of this big amount of raw data includes normalization, clustering and classification. The present study surveys the application of clustering technique in microarray DNA analysis. Materials and methods: We analyzed data of Van’t Veer et al study dealing with BRCA1...

متن کامل

Assessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories

In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...

متن کامل

Graph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members

Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...

متن کامل

Evaluation of Streamline Clustering Techniques for Blood Flow Data

Understanding the hemodynamics of blood flow in vascular pathologies such as aneurysms is essential for both their diagnosis and treatment. Computational fluid dynamics (CFD) simulations of blood flow based on patient-individual data are performed to better understand aneurysm initiation and progression and for predicting treatment success. A CFD simulation results in a complex, multiparameter ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009